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Abstract
We get a generalization of Krein’s formula—which relates the resolvents
of different self-adjoint extensions of a differential operator with regular
coefficients—to the non-regular case A = −∂2

x + (ν2 − 1/4)/x2 + V (x), where
0 < ν < 1, and V (x) is an analytic function of x ∈ R

+ bounded from
below. We show that the trace of the heat kernel e−tA admits a non-standard
small-t asymptotic expansion which contains, in general, integer powers of tν .
In particular, these powers are present for those self-adjoint extensions of A

which are characterized by boundary conditions that break the local formal
scale invariance at the singularity.

PACS numbers: 02.30.Gp, 03.70.+k

1. Introduction

In quantum field theory the effective action, the free energy and other physical quantities
related to the vacuum state are generically divergent and require a renormalization procedure.
A powerful and elegant regularization scheme relies on the small-t asymptotic expansion of
the trace of the heat kernel e−tA corresponding to an elliptic differential operator A determined
by the Lagrangian of the theory (see, e.g. [1–3].)

It is well known [4] that for an elliptic boundary value problem in an m-dimensional
compact manifold with boundary, described by a differential operator A of order d, with
smooth coefficients and defined on a domain of functions subject to local boundary conditions,
the heat-kernel trace admits a small-t asymptotic expansion given by

Tr{e−tA} ∼
∞∑

n=0

an(A)t(n−m)/d, (1.1)

where the coefficients an(A) are integrals on the manifold and its boundary of geometrical
invariants [5].
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However, not much is known about the heat-kernel trace asymptotic expansion for the
case of differential operators with singular coefficients (see chapter 6 of [3].)

In 1980 Callias and Taubes [6] have pointed out that for some differential operators with
singular coefficients the heat-kernel trace asymptotic expansion in terms of powers of the form
t (n−m)/d is ill-defined and conjectured that more general powers of t, as well as log t terms,
could appear.

In the present paper we will study the small-t asymptotic expansion of the heat-kernel
trace of the differential operator

A = −∂2
x +

ν2 − 1/4

x2
+ V (x), (1.2)

where ν ∈ (0, 1) ⊂ R and V (x) is an analytic function of x ∈ R
+.

The operator (1.2) defined on D(A) := C∞
0 (R+), the set of smooth functions on R

+ with
compact support out of the origin, admits a one-parameter family of self-adjoint extensions,
Aθ with θ ∈ R. These self-adjoint extensions are characterized by the boundary condition
the functions in their domains satisfy at the singular point x = 0. Each of them describes a
different physical system whose spectral properties depend on the behaviour of the functions
at the singularity.

Since the heat kernel e−tAθ

corresponding to an arbitrary self-adjoint extension Aθ is not
trace class, we will study the trace of the difference e−tAθ − e−tA∞

, where A∞ denotes the
Friedrichs extension. We will show in section 4 that this trace admits an asymptotic expansion
of the form

Tr
{
e−tAθ − e−tA∞} ∼

∞∑
n=0

an(ν, V )t
n
2 +

∞∑
N,n=1

bN,n(ν, V )θN tνN+ n
2 − 1

2 . (1.3)

The coefficients an(ν, V ), bN,n(ν, V ) can be recursively computed for each potential V (x).
Note that the singular term in (1.2) not only contributes to the coefficients an(ν, V ) of the
standard terms but also leads to the presence of powers of t whose exponents are not half-
integers but depend on the ‘external’ parameter ν.

It is also remarkable that these terms are absent only for θ = 0 and θ = ∞, which
correspond to the self-adjoint extensions characterized by scale invariant boundary conditions
at the singular point x = 0. Indeed, the first two terms in the rhs of equation (1.2), which are
dominant for x � 0, present the same scaling dimension. However, the behaviour of the wave
functions at the origin breaks, in general, this local scale invariance. Only for the self-adjoint
extensions characterized by θ = 0 or θ = ∞ is the boundary condition also scale invariant
(see equation (2.1).)

There is a dimensional argument in favour of the plausibility of the result in (1.3). Note
that the parameter θ in (2.1) has dimensions [length]−2ν and, due to the analyticity of V (x),
the dimensions of any other parameter in the problem is an integer power of the length. Since
t has dimensions [length]2, if the coefficients of the asymptotic expansion of the heat-kernel
trace were to depend on the boundary conditions by means of a polynomial dependence on θ ,
then this expansion should contain integer powers of tν . Consequently, the only self-adjoint
extensions for which these powers are to be absent are θ = 0 and θ = ∞.

As a matter of fact, the ‘functorial method’ [2, 3, 7] which has been widely used to
determine the coefficients of the heat-kernel expansion in the regular case can be also applied
to operator (1.2) to determine some of the an(ν, V ) and bN,n(ν, V ) in expression (1.3). The
asymptotic expansion (1.3) generalizes the results in [8, 9] where some singular Schrödinger
and Dirac operators were considered.

There is a second new result in the present paper which leads us to the derivation of the
asymptotic expansion (1.3). By generalizing Krein’s formula [10] (see also [11]) we find a
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relation between the resolvents corresponding to different self-adjoint extensions of operator
(1.2). Since there exist two self-adjoint extensions, namely A0 and A∞, for which the ν-
dependent exponents of t in (1.3) are absent, expansion (1.3) will come out as a consequence
of this relation.

Schrödinger operators defined by a singular potential whose leading behaviour near the
singularity is given by (1.2) have been studied as models of conformal invariance in quantum
mechanics [12], Calogero models [13], SUSY breaking in quantum mechanics [9] and cosmic
strings [14]. Since the dynamics of quantum fields on black holes’ backgrounds is described by
operators similar to (1.2), there exists a microscopic description of black holes in the vicinity
of the horizon in terms of conformal models [15]. In this context, in which the operator (1.2)
is relevant, particular attention to the most general boundary conditions has been given in [16].

Differential operators with a singular coefficient given by (1.2) are also obtained from
the Laplacian on manifolds with conical singularities where the parameter ν is related to the
deficiency angle. The asymptotic expansion of the heat kernel of the Laplacian on manifolds
with conical singularities has been considered, probably for the first time, in [17]. This
problem has been also studied in [18]; however, the most general boundary conditions at the
singularity were not considered there.

More recently, Mooers [19] studied the self-adjoint extensions of the Laplacian acting on
differential forms on a manifold with a conical singularity and showed that the asymptotic
expansion of the heat-kernel trace contains powers of t whose exponents depend on the
deficiency angle of the singularity1.

In section 2 we describe the self-adjoint extensions of operator (1.2) and in section 3 we
generalize Krein’s formula to this type of singular operators. Finally, in section 4, we use this
generalization to establish expansion (1.3) that describes the small-t asymptotic expansion of
the heat-kernel trace.

2. Self-adjoint extensions

Let us consider the one-dimensional differential operator A given by (1.2) defined on
D(A) := C∞

0 (R+) ⊂ L2(R
+). First, note that the first two terms in the rhs of expression

(1.2) have the same scaling properties at the singular point x = 0. This fact will be essential
in the following.

Next, we describe the behaviour at the singular point x = 0 of the functions in D(A†).

Theorem 2.1.

ψ ∈ D(A†) → ψ(x) = C[ψ](x−ν+1/2 + θψxν+1/2) + O(x3/2), (2.1)

for x → 0+ and some constants C[ψ], θψ ∈ C.

Proof. See the appendix. �

Corollary 2.2.

φ,ψ ∈ D(A†) → (φ,A†ψ) − (A†φ,ψ) = C∗[φ]C[ψ](θ∗
φ − θψ). (2.2)

Remark 2.3. By choosing ψ = φ we conclude that for all ψ ∈ D(A†) the parameter θψ

defined by theorem 2.1 is real.

Proof. Expression (2.2) follows from an integration by parts in its lhs using theorem 2.1. �
1 Although this result is confirmed by our calculations we obtain a different value for the corresponding coefficient
(see page (4) of [19]).
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As a consequence of corollary 2.2 the self-adjoint extensions Aθ of the differential operator
A are characterized by a real parameter θ , being their domains defined by

D(Aθ) := {φ ∈ D(A†) : θφ = θ}, (2.3)

where θφ is defined according to theorem 2.1. The parameter θ thus determines the boundary
condition at the singularity.

There exists another self-adjoint extension (see the appendix), which we denote by A∞,
whose domain is given by

D(A∞) = {φ ∈ D(A†) : φ(x) = C[φ]xν+1/2 + O(x3/2), with C[φ] ∈ C}. (2.4)

3. Generalization of Krein’s formula

The non-regular differential operator A, given by expression (1.2), defined on D(A) :=
C∞

0 (R+) admits an infinite family of self-adjoint extensions Aθ characterized by a real
parameter θ . As we have shown, this parameter describes the boundary condition at the
singularity. The purpose of this section is to establish a relation between the resolvents
corresponding to these self-adjoint extensions. We will consequently obtain a generalization
of Krein’s formula.

The kernel Gθ(x, x ′, λ) of the resolvent (Aθ − λ)−1 can be written as

Gθ(x, x ′, λ) = − 1

W(λ)
{�(x ′ − x)Lθ(x, λ)R(x ′, λ) + �(x − x ′)Lθ (x

′, λ)R(x, λ)}, (3.1)

where �(x) is the Heaviside function and Lθ(x, λ), R(x, λ) ∈ Ker(A† − λ). The latter is
square integrable at x → ∞ and the former satisfies the boundary condition

Lθ(x, λ) = x−ν+1/2 + θxν+1/2 + O(x3/2), (3.2)

at x → 0+. W(λ) is their Wronskian, which is independent of x.
As a first step, we will find a relation between the resolvents corresponding to θ = ∞

and θ = 0. In order to do this, we consider the equation

(Aθ − λ)φθ (x, λ) = f (x) (3.3)

whose solutions for θ = 0 and θ = ∞ are given by

φ∞(x, λ) =
∫ ∞

0
G∞(x, x ′, λ)f (x ′) dx ′ = φ∞(λ)xν+1/2 + O(x3/2), (3.4)

φ0(x, λ) =
∫ ∞

0
G0(x, x ′, λ)f (x ′) dx ′ = φ0(λ)x−ν+1/2 + O(x3/2). (3.5)

Note that

φ∞(λ) =
∫ ∞

0
G∞(x ′, λ)f (x ′) dx ′, φ0(λ) =

∫ ∞

0
G0(x

′, λ)f (x ′) dx ′, (3.6)

where

G∞(x ′, λ) := lim
x→0

x−ν−1/2G∞(x, x ′, λ), G0(x
′, λ) := lim

x→0
xν−1/2G0(x, x ′, λ). (3.7)

Lemma 3.1.

φ0(x, λ) = φ∞(x, λ) + 2νG∞(x, λ)φ0(λ). (3.8)
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Proof.

φ0(x, λ) − φ∞(x, λ) =
∫ ∞

0
[G0(x, x ′, λ) − G∞(x, x ′, λ)](A0 − λ)φ0(x ′, λ) dx ′

= − lim
x ′→0+

{[G0(x, x ′, λ) − G∞(x, x ′, λ)]∂x ′φ0(x ′, λ)

− ∂x ′ [G0(x, x ′, λ) − G∞(x, x ′, λ)]φ0(x ′, λ)} = 2νG∞(x, λ)φ0(λ). �

Taking the limit x → 0+ in equation (3.8) we obtain

G∞(x, λ) = 1

2ν
(x−ν+1/2 − K(λ)−1xν+1/2) + O(x3/2), (3.9)

where

K(λ) := φ0(λ)

φ∞(λ)
. (3.10)

Note that K(λ) can be computed by studying the behaviour at the singularity of the kernel of
the resolvent corresponding to the extension θ = ∞.

Replacing φ0(λ) from equation (3.10) into equation (3.8) one can express the solution
φ0(x, λ) corresponding to θ = 0 by means of data related to the self-adjoint extension
corresponding to θ = ∞,

φ0(x, λ) = φ∞(x, λ) + 2νK(λ)G∞(x, λ)φ∞(λ). (3.11)

Next, we will establish a similar expression giving the resolvent for an arbitrary self-adjoint
extension in terms of data related to the boundary conditions corresponding to θ = ∞.

Lemma 3.2.

φθ(x, λ) = φ∞(x, λ) + 2ν(K(λ)−1 + θ)−1G∞(x, λ)φ∞(λ). (3.12)

Proof. Equation (3.8) shows that the difference between both sides of expression (3.12)
belongs to Ker(A† − λ). Moreover, equations (3.4) and (3.9) show that both sides of
(3.12) belong to D(Aθ). The proof follows by virtue of the uniqueness of the solution of
equation (3.3). �

Finally, from equations (3.11) and (3.12) it is straightforward to obtain the following
theorem.

Theorem 3.3 (Generalization of Krein’s formula).

(Aθ − λ)−1 − (A∞ − λ)−1 = (A0 − λ)−1 − (A∞ − λ)−1

1 + θK(λ)
. (3.13)

In the next section we will show that the asymptotic expansion of K(λ) for large |λ|
presents powers of λ whose exponents depend on the parameter ν. This leads, due to the
relation between the resolvent and the heat kernel, to the asymptotic series (1.3).
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4. Asymptotic expansion of the resolvent

In this section we will show that K(λ) admits a large-|λ| asymptotic expansion in powers of
λ with ν-dependent exponents. Since we can consider λ in the negative real semi-axis of the
complex plane, we will study the solutions ψ of equation

(A + z)ψ(x, z) = 0, (4.1)

for large z ∈ R
+. In particular, due to equations (3.9) and (3.13) we just need to consider

solutions satisfying the boundary conditions corresponding to θ = ∞ and θ = 0.
Taking into account the scaling properties of the first two terms in (1.2) it is convenient

to define a new variable y := √
zx ∈ R

+. Equation (4.1) can then be written as(
−∂2

y +
ν2 − 1/4

y2
+ 1 +

1

z
V (y/

√
z)

)
ψ(y/

√
z, z) = 0. (4.2)

Assuming analyticity of V (x), this equation can be iteratively solved for large z and the
solution which is square integrable at y → ∞ is given by

R(y, z) = √
yKν(y) +

∞∑
n=0

ψn(y)z−1−n/2, (4.3)

where Kν(y) is the modified Bessel function and ψn(y) depend polynomially on V (x) and
its derivatives. From this expression it can be easily seen that the behaviour of R(y, z) for
x → 0+ is given by

R(y, z) � �(ν)

21−ν
y−ν+1/2 +

�(−ν)

21+ν
H(z) · yν+1/2 + O(y3/2), (4.4)

where H(z) admits a large-z asymptotic expansion in half-integer powers of z.
From equation (3.1) for the case θ = ∞ and equations (3.9) and (4.4) we obtain

K(z) = 4ν �(1 + ν)

�(1 − ν)
z−νH(z)−1. (4.5)

Since H(z) admits an asymptotic series in half-integer powers of z, the large-z asymptotic
expansion of K(z) contains powers of z whose exponents depend on the parameter ν.
Proceeding in a similar way one can prove, by means of expression (4.3), that
Tr{(A0 + z)−1 − (A∞ + z)−1} admits an asymptotic expansion in half-integer powers of z.

From theorem 3.3 and due to the factor z−ν in equation (4.5) we conclude that the large-|λ|
asymptotic expansion of Tr{(Aθ −λ)−1−(A∞−λ)−1} contains integer powers of λ−ν . Finally,
it can be straightforwardly shown that its inverse Laplace transorm, Tr

{
e−tAθ −e−tA∞}

, admits
the asymptotic expansion given by (1.3).
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Note added in proof. The interesting case ν = 0—not considered in this article—leads to a different kind of unusual
spectral properties. Indeed, it has been shown [21] that the corresponding zeta-function ζ(s) is not, in general, regular
at s = 0.
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Appendix. Proof of theorem 2.1

By virtue of Riesz representation lemma [20]

ψ ∈ D(A†) → ∃ψ̃ ∈ L2(R
+) : (ψ,Aφ) = (ψ̃, φ) ∀φ ∈ D(A). (A.1)

Consequently,

A†ψ := ψ̃. (A.2)

Defining χ := x−ν−1/2ψ we obtain

∂x(x
2ν+1∂xχ) = −xν+1/2(ψ̃ − V (x)ψ) ∈ L1(R

+). (A.3)

Therefore, there exists a constant C1 ∈ C such that

∂xχ = C1x
−1−2ν − x−1−2ν

∫ x

0
yν+1/2

(
−∂2

y +
ν2 − 1/4

y2

)
ψ dy. (A.4)

The Cauchy–Schwartz inequality implies∣∣∣∣x−1−2ν

∫ x

0
yν+1/2

(
−∂2

y +
ν2 − 1/4

y2

)
ψ dy

∣∣∣∣ � C2

∥∥∥∥
(

−∂2
y +

ν2 − 1/4

y2

)
ψ

∥∥∥∥
(0,x)

x−ν, (A.5)

for some C2 ∈ C. In consequence,∣∣∣∣
∫ x

z−1−2ν

∫ z

0
yν+1/2

(
−∂2

x +
ν2 − 1/4

x2

)
ψ dy dz

∣∣∣∣ � C3 + C4x
1−ν, (A.6)

where C3, C4 ∈ C. Thus, there exist C5, C6 ∈ C, such that

ψ = C5x
−ν+1/2 + C6x

ν+1/2 + O(x3/2), (A.7)

for x → 0+.
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